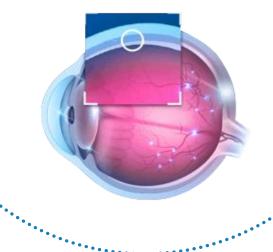


JMP Securities Life Sciences Conference June 16, 2021

Forward-Looking Statements


This presentation contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, as amended. The words "may," "will," "could," "would," "should," "expect," "plan," "anticipate," "intend," "believe," "estimate," "predict," "project," "potential," "continue," "target" and similar expressions are intended to identify forward-looking statements, although not all forwardlooking statements contain these identifying words. Clearside Biomedical, Inc.'s views as of the date of this presentation about future events and are subject to risks, uncertainties, assumptions, and changes in circumstances that may cause Clearside's actual results, performance, or achievements to differ significantly from those expressed or implied in any forward-looking statement. Although Clearside believes that the expectations reflected in the forward-looking statements are reasonable, Clearside cannot guarantee future events, results, performance, or achievements. Some of the key factors that could cause actual results to differ from Clearside's expectations include its plans to develop and potentially commercialize its product candidates; Clearside's planned clinical trials and preclinical studies for its product candidates; the timing of and Clearside's ability to obtain and maintain regulatory approvals for its product candidates; the extent of clinical trials potentially required for Clearside's product candidates; the clinical utility and market acceptance of Clearside's product candidates; Clearside's commercialization, marketing and manufacturing capabilities and strategy; Clearside's intellectual property position; and Clearside's ability to identify additional product candidates with significant commercial potential that are consistent with its commercial objectives. For further information regarding these risks, uncertainties and other factors you should read the "Risk Factors" section of Clearside's Annual Report on Form 10-K for the year ended December 31, 2020, filed with the SEC on March 15, 2021, and Clearside's other Periodic Reports filed with the SEC. Clearside expressly disclaims any obligation to update or revise the information herein, including the forward-looking statements, except as required by law. This presentation also contains estimates and other statistical data made by independent parties and by Clearside relating to market size and growth and other data about its industry. This data involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such estimates. In addition, projections, assumptions and estimates of Clearside's future performance and the future performance of the markets in which Clearside operates are necessarily subject to a high degree of uncertainty and risk.

Developing and Delivering Treatments that Restore and Preserve Vision for People with Serious Back of the Eye Diseases

Versatile Therapeutic Platform

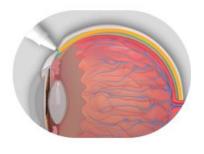
SCS Microinjector® with proprietary drug formulations target the Suprachoroidal Space

Proprietary Access to the Suprachoroidal Space (SCS®)

Utilization Across Small Molecules and Gene Therapy

Ability to Target Multiple Ocular Diseases

Internal Research & Development Pipeline


External Collaborations for Pipeline Expansion

Core Advantages of Treating Via the Suprachoroidal Space

TARGETED

The back of the eye is the location of many irreversible and debilitating visual impairments

for efficacy

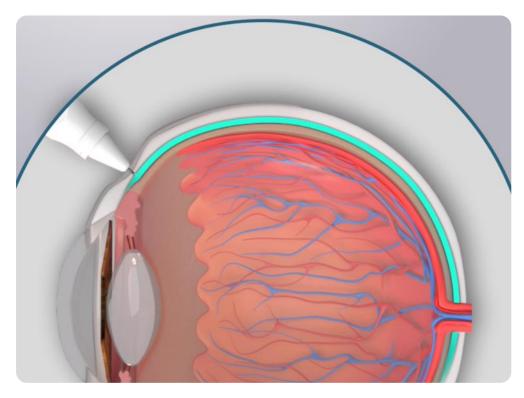
COMPARTMENTALIZED

Drug is compartmentalized in the suprachoroidal space, which helps keep it away from non-diseased tissues and entirely behind the visual field

for safety

BIOAVAILABLE & PROLONGED DRUG LEVELS

Fluid spreads circumferentially and posteriorly when injected within the suprachoroidal space, bathing the choroid and adjacent areas with drug


for durability

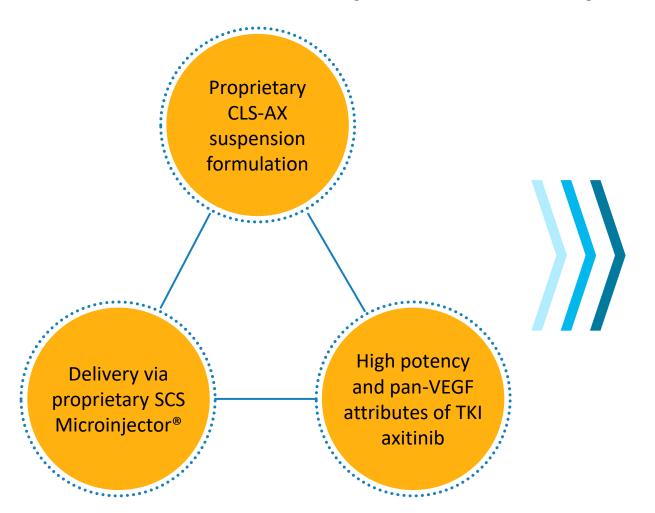
Clearside's SCS Microinjector®: The Only Clinically Tested Injection Device for Suprachoroidal Drug Delivery

- Clinically tested in >1200 suprachoroidal Injections
 - 8 clinical trials completed
 - Injections performed across multiple retinal disorders
- Safety profile comparable to intravitreal injections¹
 - No Serious Adverse Events (SAEs) involving lens injury, suprachoroidal hemorrhage, or endophthalmitis have been observed
- 4 clinical trials ongoing including partner programs

SUPRACHOROIDAL SPACE INJECTION

Novel SCS Microinjector® allows for precise delivery into the suprachoroidal space

Suprachoroidal Space (SCS®) Injection Platform


Internal Development Pipeline								
PROGRAM	THERAPEUTC ENTITY	INDICATION	RESEARCH	PRECLINICAL	PHASE 1/2	PHASE 3		
CLS-AX (axitinib injectable suspension)	Small Molecule	Wet AMD			• CASIS			
Integrin Inhibitor (Injectable suspension)	Small Molecule	Diabetic Macular Edema (DME)						
Gene Therapy	Non-Viral Vectors	"Therapeutic Biofactory" / Inherited Retinal Disease						

SCS Microinjector® Partner Programs							
PARTNER	THERAPEUTC ENTITY	INDICATION	IND-Enabling	PHASE 2	PHASE 3	NDA	
REGENXBIO	AAV-based Gene Therapy	Wet AMD (AAVIATE)		——			
REGENXBIO	AAV-based Gene Therapy	Diabetic Retinopathy (ALTITUDE)		——			
AURA BIOSCIENCES	Viral-like Drug Conjugate	Ocular Oncology/Choroidal Melanoma					

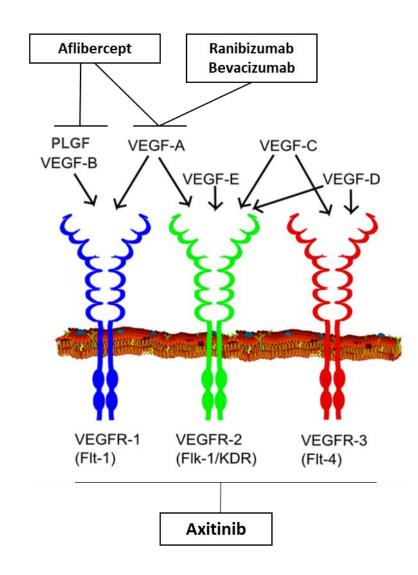
XIPERE™ Commercial Partners								
PARTNER	THERAPEUTC ENTITY	TERRITORY	PRE-CLINICAL	PHASE 1	PHASE 2	PHASE 3	NDA	
BAUSCH HEALTH	Small Molecule	U.S. & Canada; options ex-North America					PDUFA 10/30/21	
ARCTIC VISION	Small Molecule	Greater China & South Korea						

CLS-AX (axitinib injectable suspension) for Suprachoroidal Injection in wet AMD

Potential to improve the treatment landscape for wet AMD patients

Longer lasting treatment may reduce patient burden from monthly injections

Protecting the vitreous and anterior chamber may eliminate symptomatic floaters and other side effects


Targeted high levels to affected choriodretina for potential efficacy benefits

Given experience with >1200 injections, may be easily adopted in current clinical practice

Axitinib: a Highly Potent, pan-VEGF TKI to Treat Wet AMD

- Axitinib's intrinsic pan-VEGF inhibition through receptor blockade
 - Approved treatments are focused VEGF-A inhibitors
- Inhibits VEGFR-1, VEGFR-2, VEGFR-3 receptors
 - More effective than anti-VEGF-A in *in-vitro* angiogenesis model¹⁻²
- Highly potent tyrosine kinase inhibitor (TKI)
 - >10x more potent than other TKIs in preclinical studies
 - Better ocular cell biocompatibility than other TKIs³
 - More effective than other TKIs for experimental corneal neovascularization in preclinical models
- Preclinical data showed axitinib inhibition and regression of angiogenesis

CLS-AX Phase 1/2a Clinical Trial in Wet AMD

Trial Design and Objectives

- Open-label study to evaluate safety and tolerability of escalating single doses of CLS-AX administered through suprachoroidal injection following IVT aflibercept
- 3 Cohorts of 5 patients each: n=15
- Dose-escalation of CLS-AX (in mg): Cohort 1 at 0.03; Cohort 2 at 0.10; Cohort 3 currently planned at 0.30
- Evaluate visual function, ocular anatomy, and need for additional treatment
- Assessment for additional therapy: loss from best measurement of >10 letters in BCVA with exudation; increase in CST >75 microns; a vision-threatening hemorrhage

CASIS Cohort 1: Encouraging Results Support Progression to Cohort 2

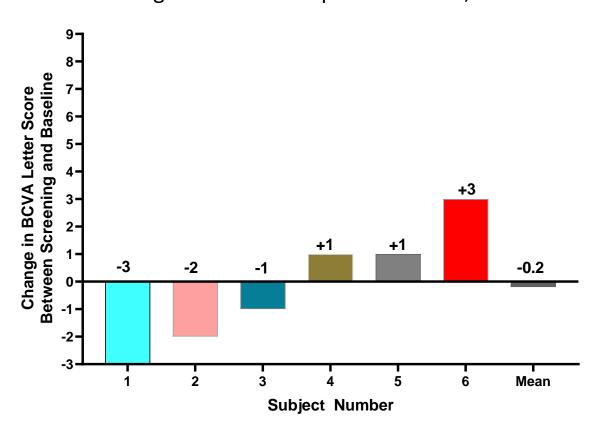
- Cohort 1 Objective: To establish a floor of safety in this first-in-human trial with low dose CLS-AX (0.03 mg dose)
- Highly treatment-experienced (at screening prior to aflibercept administration)
 - Total number prior anti-VEGF treatments: mean = 25.8, median = 28.0
 - Total number prior anti-VEGF treatments within the last 12 months: mean = 9.0, median = 11.0
- Demographics & disease characteristics (at baseline prior to CLS-AX administration)
 - Average age: 82 years
 - Mean central subfield thickness (CST) of the macula was 231 μ m (range 208 294 μ m)
 - Mean best corrected visual acuity (BCVA) score was 59.0 (range 29 74)
- Conclusion
 - Cohort 1 supports progression to Cohort 2

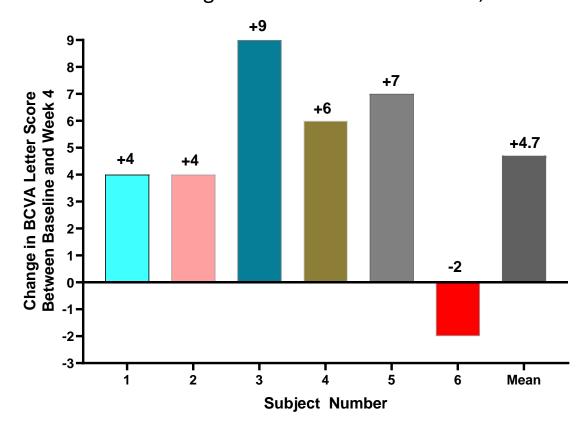
Cohort 1: Summary of Primary and Secondary Measures

SAFETY: CLS-AX WELL TOLERATED

- No study suspension or stopping rules were met
- No SAEs have been reported
- No signs of inflammation, vitreous haze, IOP safety signals, vasculitis, or intravitreal dispersion of investigational product
- 2 TEAEs assessed as unrelated to CLS-AX by the investigators

BCVA AND ANATOMIC RESULTS

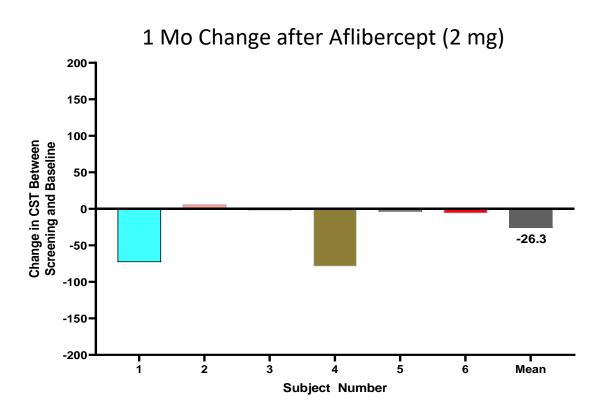

- 1-month visual acuity improvement of 1 line post CLS-AX vs no change for aflibercept, at this initial low dose
 - Aflibercept: 1-month BCVA change -0.2 ETDRS letters (p=0.862*)
 - CLS-AX 0.03 mg: 1-month BCVA change +4.7 ETDRS letters (p=0.029*) with 5/6 patients improving by 4 or more letters
- Mean CST stable within 50 μm at one month post 2 mg aflibercept and at one month post 0.03 mg CLS-AX
 - In these treatment-experienced patients, the normal screening baseline CST imposes a floor effect, limiting improvement in CST


Best Corrected Visual Acuity One Month Response Following Aflibercept 2 mg vs CLS-AX 0.03 mg

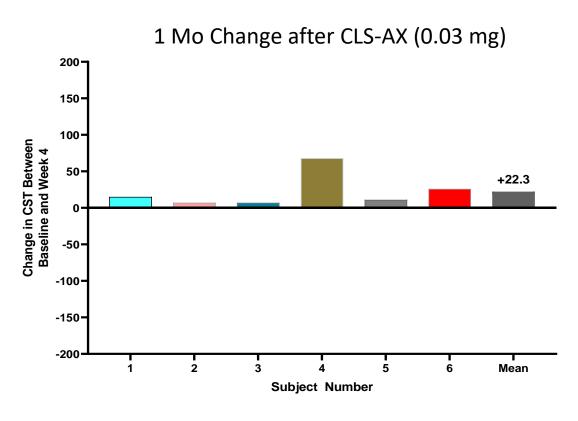
1 Mo Change after Aflibercept : -0.2 letters, P=0.862*

Mean BCVA at screening (prior to aflibercept) = 59.2

1 Mo Change after CLS-AX: +4.7 letters, P=0.029*

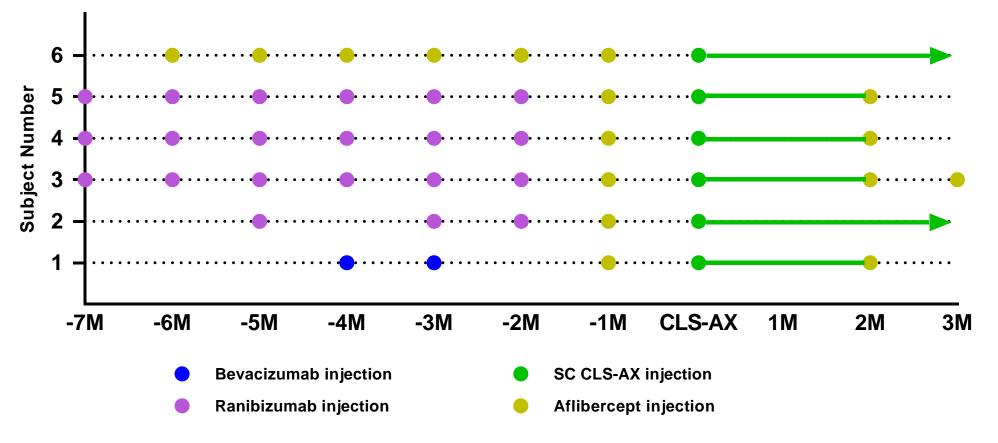


Mean BCVA at baseline (prior to CLS-AX) = 59.0



Central Subfield Thickness Mean CST Stable within 50 μm at One Month

Mean CST at screening (prior to aflibercept) = $257.5 \mu m$


Mean CST at baseline (prior to CLS-AX) = 231.2 μ m

Cohort 1: Preliminary Signs of Potential Durability at Low Dose in Highly Treatment Experienced and Dependent Patients

No subjects required additional treatment at 1 month post CLS-AX 2 of 6 subjects did not require additional treatment for 3 months post CLS-AX

Therapies for nAMD up to 6 Months Prior to Screening

OASIS Cohort 1 Results Support Advancing to Cohort 2

SAFETY

- CLS-AX well tolerated
- No signs of inflammation, vitreous haze, IOP safety signals, vasculitis, or intravitreal dispersion of investigational product

VISUAL ACUITY

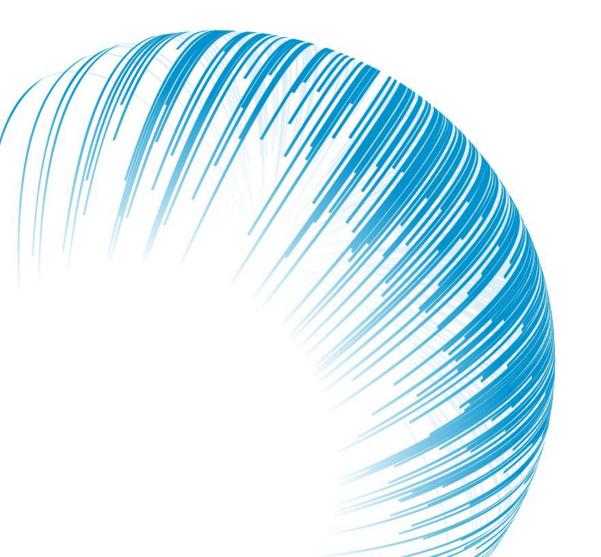
- At 1 month, 5 of 6 patients had improved BCVA >4 letters (mean +4.7 letters)
- At 3 months, 2/6 no need for additional therapy and BCVA improved by 5 and 7 letters from baseline

ANATOMIC EFFECTS

 Mean CST stable within $50 \, \mu m$ at 1 month

DURABILITY POST CLS-AX

- No subjects required additional therapy at 1 month
- 2/6 no need for additional therapy through 3 months
- 4/6 received additional therapy at 2 months



Cohorts 2 and 3 Continue to Escalate Single CLS-AX Dose

- With 3.3x and 10x dosing in cohorts 2 and 3 respectively:
 - We expect progressively increased durability, based on our preclinical pharmacokinetic studies
 - And potential for better visual acuity outcomes than anti-VEGFA based on pan-VEGF inhibition
- Adding three-month extension study to follow patients in Cohort 2 and Cohort 3
- Preclinical pharmacokinetic studies show progressively prolonged tissue levels with increased dosing

Nasdaq: CLSD